Observation of Dirac cone warping and chirality effects in silicene.

نویسندگان

  • Baojie Feng
  • Hui Li
  • Cheng-Cheng Liu
  • Ting-Na Shao
  • Peng Cheng
  • Yugui Yao
  • Sheng Meng
  • Lan Chen
  • Kehui Wu
چکیده

We performed low temperature scanning tunneling microscopy (STM) and spectroscopy (STS) studies on the electronic properties of (√3 × √3)R30° phase of silicene on Ag(111) surface. We found the existence of Dirac Fermion chirality through the observation of -1.5 and -1.0 power law decay of quasiparticle interference (QPI) patterns. Moreover, in contrast to the trigonal warping of Dirac cone in graphene, we found that the Dirac cone of silicene is hexagonally warped, which is further confirmed by density functional calculations and explained by the unique superstructure of silicene. Our results demonstrate that the (√3 × √3)R30° phase is an ideal system to investigate the unique Dirac Fermion properties of silicene.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Does the Dirac Cone Exist in Silicene on Metal Substrates?

Absence of the Dirac cone due to a strong band hybridization is revealed to be a common feature for epitaxial silicene on metal substrates according to our first-principles calculations for silicene on Ir, Cu, Mg, Au, Pt, Al, and Ag substrates. The destroyed Dirac cone of silicene, however, can be effectively restored with linear or parabolic dispersion by intercalating alkali metal atoms betwe...

متن کامل

Uniaxial strain-induced mechanical and electronic property modulation of silicene

UNLABELLED We perform first-principles calculations of mechanical and electronic properties of silicene under uniaxial strains. Poisson's ratio and the rigidity of silicene show strong chirality dependence under large uniaxial strains. The ultimate strains of silicene with uniaxial strain are smaller than those with biaxial strain. We find that uniaxial strains induce Dirac point deviation from...

متن کامل

Quasi free-standing silicene in a superlattice with hexagonal boron nitride

We study a superlattice of silicene and hexagonal boron nitride by first principles calculations and demonstrate that the interaction between the layers of the superlattice is very small. As a consequence, quasi free-standing silicene is realized in this superlattice. In particular, the Dirac cone of silicene is preserved. Due to the wide band gap of hexagonal boron nitride, the superlattice re...

متن کامل

Stability and Electronic Properties of Two-Dimensional Silicene and Germanene on Graphene CHIH-PIAO CHUU,

Submitted for the MAR14 Meeting of The American Physical Society Stability and Electronic Properties of Two-Dimensional Silicene and Germanene on Graphene CHIH-PIAO CHUU, YONGMAO CAI, C.-M. WEI, M.-Y. CHOU, Academia Sinica — Recently, there have been experimental attempts to synthesize silicene, a two-dimensional (2D) graphene-like form of silicon on metal surfaces such as Ag(111) and Ir(0001)....

متن کامل

A spin density wave in the topological insulator Bi2Te3

Topological insulators are materials with a bulk band gap, but with topologically protected, spin polarized surface states with Dirac dispersion. Bi2Te3 is such a topological insulator with a single Dirac cone at the center of the Brillouin zone. ARPES studies have shown that the Fermi surface of Bi2Te3 changes from a circle to a hexagon, and then to a hexagram, when moving away from the Dirac ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 7 10  شماره 

صفحات  -

تاریخ انتشار 2013